Skip to content

Tag: jetsonnano

NVidia Jetson Nano fan direction

NVIDIA Jetson Nano fan direction for Noctua NF-A4x20 PWM

Recently I bought an NVidia Jetson Nano board and a fan for a side project. It is about machine learning with training and inference. Therefore, the CPU and GPU will work a lot and get hot! I searched the web for the right fan and I found the Noctua NF-A4x20 PWM (Amazon*) is recommended. A perfect product: low noise, rubber decoupling, good performance.

As it was delivered, I installed it immediately – of course. The question was: which direction?

So I did some tests in both fan directions. Running a high CPU intense compilation, the performance was better in the downward direction.



Jetson Nano fan – comparison CPU test.

Upward Downward
44°C 40°C

Upward / Downward according to the arrow on the side of the Noctua NF-A4x20 PWM fan.

It is just a few degrees of difference. But it will count if you do training on the Jetson Nano. I did a couple of TensorFlow training jobs which took 12-19 hours. CPU & GPU got very hot, and the fan has cooled the NVidia Jetson Nano like a charm. By the way, I used the 4GB version, but I think the cooling performance and temperatures are the same as the 2GB version.

I also tried the non-PWM version of the fan with the same results. But since the fan is always on without PWM, it is fairly noisy. With the PWM version, the fan usually runs with just 33% of the maximum power.

So I hope this helps for your Noctua NF-A4x20 PWM fan installation: recommended direction is downward according to the arrow printed on the side of the fan.

Leave a Comment

Recognizer – a smart scale approach

Im Supermarkt darauf warten, dass der/die Kassierer/in den Code für das zu wiegende Obst oder Gemüse raussucht? Kommt Dir bekannt vor? In einer digitalisierten und hoch-performanten Welt sollte das doch eigentlich nicht nötig sein, oder? Dachte ich mir auch. Also mal schnell was überlegt: Ich wollte doch schon immer mal was mit dem NVIDIA Jetson Nano (Amazon*) machen: ein Edge Device, 120 €, 128 GPU Cores, 472 GFLOPS Rechenleistung, 5 Watt Stromverbrauch. Überzeugt. Für eine Kassenwaage sollte es ja auch kein GPU System für 2.000 € oder mehr sein. Also, taugt es etwas?

1 Comment