It all started with using AI Image Generation capabilities to (re)generate from minimal data. The recording of metaverse experiences supports various use cases in collaboration, VR training, and more. Such Metaverse Recordings can be created as multimedia and time series data during the 3D rendering process of the audio–video stream for the user. To search in a collection of recordings, Multimedia Information Retrieval methods can be used. Also, querying and accessing Metaverse Recordings based on the recorded time series data is possible. The presentation of human-perceivable results of time-series-based Metaverse Recordings is a challenge. This paper demonstrates an approach to generating human-perceivable media from time-series-based Metaverse Recordings with the help of generative artificial intelligence. Our findings show the general feasibility of the approach and outline the current limitations and remaining challenges. Read the full paper
Leave a CommentCategory: Technology
In this category I file blog posts about technology. If it is about the Internet of Things, agile development, a framework, a method, a pattern, or everything els technology relevant, I will post it here.
Generative KI in der Softwareentwicklung: Fortschritte und Grenzen
Ende 2024 stellt sich die Frage wie die Generative KI in der Softwareentwicklung vorangeschritten ist. Die Softwareentwicklung erlebt derzeit einen tiefgreifenden Wandel, der durch den Einsatz generativer KI (GenAI)-Tools vorangetrieben wird. Von automatisierten Code-Vervollständigungen bis hin zur vollständigen Erstellung von Prototypen bieten diese Tools neuartige Möglichkeiten, die Effizienz, Produktivität und sogar die Kreativität von Entwicklern zu steigern. Doch wie weit sind wir wirklich gekommen, und welche Bereiche der Softwareentwicklung werden bereits heute durch GenAI beeinflusst? In diesem Artikel werfen wir einen umfassenden Blick auf den aktuellen Stand der Dinge, betrachten praxisnahe Anwendungsfälle, beleuchten bestehende Herausforderungen und wagen einen Ausblick auf die Zukunft.
2 Comments
Five Levels of Autonomous Coding
Level 1: Assisted Coding
-
What Happens: Coders handle the bulk of the work but can request autogenerated code snippets to copy-paste or use as code completion.
-
Responsibility: Coders must validate and are ultimately responsible for all code, ensuring accuracy and functionality.
Level 2: Partly Automated Coding
-
What Happens: Coders primarily use the IDE to specify features, and the AI then modifies the code accordingly.
-
Responsibility: While the AI handles some coding, coders must validate all changes and remain responsible for the final output.
Level 3: Highly Automated Coding
-
What Happens: Coders use a more advanced interface, not limited to traditional IDEs, to specify features. AI can automatically handle specific tasks like fulfilling software tests, generating test code, reorganizing code for better maintainability, creating new user interface features, and proposing and testing solutions to errors.
-
Responsibility: Coders intervene in exceptional cases or when errors arise that the AI cannot resolve.
Level 4: Fully Automated Coding
-
What Happens: The developer’s role shifts more towards a Product Owner’s. AI can code features based on detailed specifications and autonomously handle errors—making adjustments, testing, and waiting for developers to review and commit changes.
-
Responsibility: The AI provider assumes a significant portion of the responsibility, especially in maintaining the integrity and functionality of the code.
Level 5: Autonomous Coding
-
What Happens: AI handles everything from coding new features based on persistent specifications to upgrading dependencies and fixing errors. It manages the full lifecycle of the code, including deployment.
-
Responsibility: AI becomes largely self-sufficient, significantly reducing the need for human intervention.
My First Year as a part-time PhD Student
… A Journey into Multimedia Information Retrieval and the Metaverse Hello everyone! I can’t believe it’s already been a year since I embarked on my PhD journey. Time truly flies when you’re engrossed in research, and what a year it’s been! Today, I want to share with you some of the highlights, challenges, and learnings from my first year as a PhD student, focusing on my research project in Multimedia Information Retrieval (MMIR) and its intersection with the Metaverse. The Research Project: MMIR Meets the Metaverse When I started my PhD, I was fascinated by the untapped potential of Multimedia Information Retrieval. MMIR is all about searching and retrieving multimedia data like images, videos, and audio. But I wanted to take it a step further. I was intrigued by the burgeoning Metaverse—a collective virtual shared space created by the convergence of virtually enhanced physical reality and interactive digital spaces. The…
Leave a CommentNeue Horizonte im E-Commerce: Wie KI die Spielregeln verändert
KI ist im E-Commerce ein alter Hut. Recommendations, Prognosen, Kundensegmentierung – die Use Cases gibt es schon ewig. Die neuen AI-Technologien sind dennoch ein Game-Changer und verändern den Digital Commerce, da bin ich sicher. Es gibt aber Unternehmen, die sind besser vorbereitet als andere und so wird sich schnell zeigen, wer die Möglichkeiten als Vorteil einsetzen kann – und wer nicht.
Leave a CommentKI in der Digital Multimedia Supply Chain
Das Thema KI ist ja jetzt nicht neu und in der Medienwelt gibt es ja viel KI Potential: Medienanalyse, Recommendations, Predictions… dennoch sind jetzt viele neugierig auf die Möglichkeiten insbesondere zur Automatisierung von Prozessen. Und da helfen die neuen KI Modelle tatsächlich besser, weil die Qualität einfach besser ist!
Leave a Comment