Skip to content

Category: Data Science

All posts about Data Science.

KI in der Softwareentwicklung: Zwischen Hype und echter Relevanz

Künstliche Intelligenz hat die Softwareentwicklung bereits in ihren Grundzügen verändert – und viele beobachten diesen Trend mit Skepsis. Ist das wirklich relevant? Oder nur der nächste Hype, der bald wieder verpufft? Tatsächlich ist KI mehr als ein nettes Gimmick: Erste Werkzeuge zeigen schon heute, wie sich einfache Anforderungen schnell, effizient und größtenteils zuverlässig umsetzen lassen. Klar müssen die Prompts von Entwicklern erstellt werden um die richtigen Ergebnisse zu erzielen. Aber oft braucht es nur noch rund 20 Prozent Ihrer Fähigkeiten. Was heißt das? Prozesse lassen sich beschleunigen, repetitive Aufgaben abgeben – und das Potenzial ist noch lange nicht ausgeschöpft.

Der bekannte Denker Günther Dück sprach einst von der „Hybris-vs.-Hype“-Kurve: Zuerst wird eine neue Technologie überhyped, dann folgt das Tal der Ernüchterung. Genau dort, wo echte Produktivität entsteht, treten oft die Skeptiker auf den Plan: „Ich hab’s doch gesagt, das bringt alles nichts.“ Doch gerade an diesem Punkt zeigt sich, wer den nächsten Schritt geht – und wer zurückbleibt.

Denn auch wenn KI nicht perfekt ist, ist sie bereits hoch relevant. Perfektion ist keine Voraussetzung für Nutzen. Wer sie heute einsetzt, automatisiert Prozesse, beschleunigt Workflows und schafft Raum für Kreativität. Wer sie ignoriert, bleibt zurück.

Es geht nicht darum, KI zu verklären. Sie wird nicht jeden Menschen ersetzen und auch nicht jede Software automatisch besser machen. Aber sie ist ein mächtiges Werkzeug – und in der Softwareentwicklung in den richtigen Händen ein echter Produktivitäts-Booster. Der Unterschied liegt in der Herangehensweise: Wer technische Kompetenz mit strategischem Denken kombiniert, wer seine Rolle im Entwicklungsprozess anpasst und erkennt, welche Aufgaben sich sinnvoll an die Werkzeuge delegieren lassen, kann mit KI gezielt Softwareprojekte beschleunigen, sogar die Qualität erhöhen und neue Potenziale heben.

Ich erinnere mich gut an die We Are Developers Konferenz 2023 in Berlin. Damals präsentierte Thomas Dohmke, CEO von GitHub, GitHub Copilot. Mein erster Gedanke: “Ganz nett, für kleinere Funktionen sicher hilfreich.” Revolutionär? Wohl kaum. Doch mit der Zeit wurde klar: Das ist kein besserer Code-Vervollständiger, das ist eine neue Art zu arbeiten. Heute sehe ich, wie Tools selbstständig API-Debugging durchführen, Datenbankabfragen erzeugen oder Migrationsskripte vorbereiten – ohne menschliche Hilfe. Das ist mehr als Automatisierung. Das ist ein Paradigmenwechsel.

Unsere Rolle als Entwickler verändert sich. Wir geben der Maschine Aufgaben, denken in Zielen, nicht mehr in jedem einzelnen Befehl. KI wird zum verlässlichen Partner, der rund um die Uhr unterstützt. Wer das versteht, nutzt KI nicht als Gimmick, sondern als strategisches Werkzeug.

Wie also anfangen? Ganz einfach: Tools ausprobieren. Frei verfügbare Versionen testen oder auch mal 10, 20 Euro in einen Test-Monat investieren. Mit privaten Projekten starten, nicht selbst überlegen, sondern dem KI-Werkzeug die Aufgabe geben, Erfahrungen sammeln. Es muss nicht perfekt sein – entscheidend ist, zu lernen. Ebenso, wie ich ein neues Framework oder eine Sprache lerne.

Wie bleibt man auf dem laufenden? Es gibt eine Flut an Informationen. Aber niemand muss alles mitbekommen. Es reicht, ein paar gezielte Quellen zu verfolgen – sei es ein YouTube-Kanal, ein LinkedIn-Newsletter oder ein Blog. Schritt für Schritt entsteht so eine Routine, wie beim Lernen eines neuen Frameworks. Kleine Projekte, Tests, Erkenntnisse. Und plötzlich wird klar, wie viel möglich ist.

Das Neue ist da. Noch nicht perfekt, aber mächtig. Es wächst. Und es wird bleiben.

Jetzt ist der Moment, sich damit auseinanderzusetzen. Jetzt ist die Zeit, zu lernen.

Denn wer heute beginnt, profitiert morgen. Wer aber weiter auf der Schreibmaschine tippt, während andere schon Word und KI nutzen, wird den Anschluss verlieren.

Leave a Comment

Neue Horizonte im E-Commerce: Wie KI die Spielregeln verändert

 

KI ist im E-Commerce ein alter Hut. Recommendations, Prognosen, Kundensegmentierung – die Use Cases gibt es schon ewig. Die neuen AI-Technologien sind dennoch ein Game-Changer und verändern den Digital Commerce, da bin ich sicher. Es gibt aber Unternehmen, die sind besser vorbereitet als andere und so wird sich schnell zeigen, wer die Möglichkeiten als Vorteil einsetzen kann – und wer nicht.

Leave a Comment

No-Code, LowCode und die KI als Programmierer

This talk was recorded in German at our tarent tech conference in December last year.

Fachkräftemangel ist real! Warum also sind Softwareingenieure so oft mit stupiden Aufgaben betreut und entwickeln einen CRUD-Microservice nach dem anderen? In diesem Impulsvortrag gehe ich auf mögliche Auswege aus der Misere ein und bewerte diese aus Sicht der Kunden und Dienstleistern wie uns.

Please accept YouTube cookies to play this video. By accepting you will be accessing content from YouTube, a service provided by an external third party.

YouTube privacy policy

If you accept this notice, your choice will be saved and the page will refresh.

Leave a Comment

4 Tips for development of Alexa Skills

In the last weeks, I have developed some Alexa Skills for different purposes. It is really cool to develop the skills with the Alexa developer console. Building and testing the dialogue model is fairly easy. But at some points, you may encounter some problems like me. Therefore, I would like to share some tips with you to improve the user experience of a skill significantly.

Tip 1: Use Default Slot Types

Let’s start with a simple topic. If possible, use the provided slot types from Amazon, like Amazon.FOOD or AMAZON.NUMBER. These Slots have a huge set of data in the background. They are already optimized for a good NLP understanding. Doing this on your own is a lot of work and fine-tuning the model. Save yourself many hours and use what Amazon provides you.

Tip 2: Use a proxy for local development

There are different ways to implement the logic for the service: AWS Lambda or (self-hosted) endpoint services. If you develop endpoints services, you need to redirect the requests from the Alexa skill to the development instance, usually running on the local machine. An important thing is, the service needs to provide a valid TLS certificate. The easiest way to get it running is a web-proxy system like ngrok. Ngrok routes requests via a public web URL to your local development instance. And the best thing is, it has an option to provide a valid Wildcard-TLS-Endpoint which will be accepted by Alexa. This saves you a heck of time to set up anything equivalent with DynDNS and creating certificates. ngrok - a good tool for developing Alexa Skills

Tip 3: Answer not only use-case questions

During the development of Alexa skills, you work a lot through the questions (utterances) you have in mind with regard to the use case. But, think about your users. They can just interact with your app by asking questions. They can not click through a mobile app or website to search and find things they need. It’s important to be prepared for simple and general questions such as:

  • “What are the opening hours?”
  • “What is the address of a store?”
  • “What is the maximum of items I can order?”

Think about how your customer will ask questions. Ask your friends to try the skill and listen to their natural type of questions and commands. You can also log questions in the FallbackIntent to find out what real people say.

Tip 4: Test Alexa Skill dialogue with many people

This tip continues the thoughts of the previous. Many people will formulate questions and commands differently. Since the skill is usually used by many people, you need to be prepared for different types of utterances. Add as many sample utterances as you can to improve the user experience for the skill.

These 4 tips will improve the user experience of your Alexa skill. Do you have any further tips? Let me know in the comments.

2 Comments

6 Tipps zu IoT Analytics mit der CumulocityIoT Plattform

IoT AnalyticsEigentlich hätte ich gestern auf der buildingIoT Konferenz meinen Talk zu “IoT Analytics – Stream und Batch-Processing” gehalten. Nun ja, es sollte nicht sein. Daher habe ich meine Takeaways hier zusammengefasst.

In IoT Use Cases werden oft Daten verarbeitet. Ab einer gewissen Menge an Daten gibt es einen nicht mehr zu erfüllenden Zielkonflikt zwischen Real-Time-Anforderungen und der Genauigkeit. Dieser lässt sich durch die Lambda-Architektur auflösen und in zwei Layern getrennt erfüllen. In SaaS Plattformen, wie der CumulocityIoT, stehen dazu oft Mittel wie Complex Event Processing (CEP) Engines und REST-Schnittstellen zur Verfügung. Im Falle der CumulocityIoT Plattform läuft die Stream Verarbeitung über die CEP Engine Apama. Es gibt jedoch ein paar Dinge für eine stabile und effektive Verarbeitung zu beachten. Daher hier meine 6 Tipps zu IoT Analytics.

Leave a Comment

Review of the Predictive Analytics World Business Conference

Estrel Hotel Berlin
Event Location of Predictive Analytics World Business

The last two days I was at the Predictive Analytics World Business Conference in Berlin. The event happened inside the Estrel Hotel, a nice and good managed location. In the talks of day one, little was in for me. The deep dive tracks were too deep for me. The use case tracks too superficial. At least it looks like presenting companies are using AI/ML in production. This is in contrast to the Industrial Data Science Days in Dortmund earlier this year, where Companies are using AI/ML in scientific PoCs, far from production.

At day two, the talks were much more interesting. My personal highlight was the talk (with the very long title) “Data Science Development Lifecycle – Everyone Talks About It, Nobody Really Knows How to Do It and Everyone Thinks Everyone Else Is Doing It” by Christian Lindenlaub und René Traue. They summarized their learnings from using Scrum and other methods in Machine Learning projects. They showed how to combine different agile methodologies to run successful machine learning + production software projects. Very inspiring for our own projects too.

The following talk “How to Integrate Machine Learning into Serverless Workflows” delivered also some helpful insights for some of Tarent’s current projects.

In the end, a good conference with some points I took home. See you next year? I don’t know yet. We will see.

Leave a Comment

The AirQuality Lab: How To Work With IoT Sensors

IoT Sensor: The AirQuality Lab

 

Want to learn about the Internet of Things and how to work with a sensor? I did too! I’ve been experimenting with the “Internet of Things” (IoT) since 2014 and have learned about the challenges with my sensor project: the AirQuality Lab. In the beginning, I just wanted to create something and work with the components. The scope of my side project was to read values from a sensor, transfer it to a thing-backend and then learning from the data. This post starts with the basic setup of the Thing and the following posts will cover further points.

After finishing a project in late 2014, I played around to learn a bit more about the Internet of Things (IoT) stuff for my next project. So, it was (and is) proposed, that “everything is connected in 2020” and I had to think about a product, product strategy and technical implementation in this area. Our thoughts about a domain model for IoT at this time was, to reduce everything to a source and a drain. Well, as hardware is cheap (but this is not all) I bought a Raspberry PI, a bunch of sensors and a small LCD display. Inspired by the CubeSensors, I wanted to measure air quality with the sensors and work with the derived data. This should help to understand how things process data, how to transfer it, how to analyze and derive information from it. I started the AirQuality Lab.

Leave a Comment

Books I have read in 2016

As a recap of 2016, I have created a list of the 2016 books I have bought and read. At least a serious bit. Maybe you are also interested in these books. Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers Mariette Awad, Rahul Khanna This book is more a reference of Machine Learning and I use it this way. The book contains much mathematical stuff to explain the algorithms. So if you like Agile IT Organization Design: For Digital Transformation and Continuous Delivery Sriram Narayan I choose this book as a resource for organizing my teams and make the organization more agile. While carefully selecting the methods to apply for me, I liked one the most: Alignment Maps. This concept helped my team to understand which business goals we have and why they have to do everything. A great way to show the team why their…

Leave a Comment